Inhibitory Effect of Purpurogallin on Osteoclast Differentiation In Vitro through the Downregulation of c-Fos and NFATc1
نویسندگان
چکیده
Purpurogallin, a benzotropolone-containing natural compound, has been reported to exhibit numerous biological and pharmacological functions, such as antioxidant, anticancer, and anti-inflammatory effects. In this study, we enzymatically synthesized purpurogallin from pyrogallol and investigated its role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Purpurogallin attenuated the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts from bone marrow macrophages (BMMs) without causing cytotoxicity, and suppressed upregulation of osteoclast-specific markers, including TRAP (Acp5), cathepsin K (Ctsk), and dendritic cell-specific transmembrane protein (Dcstamp). However, purpurogallin did not affect the bone resorbing function of mature osteoclasts evident by the resorption pit assay. Activation of mitogen-activated protein kinases, Akt and IkB pathways in RANK signaling were not altered by purpurogallin, whereas the expression of c-Fos and NFATc1, key transcriptional regulators in osteoclastogenesis, was dramatically inhibited by purpurogallin. Purpurogallin also significantly reduced the expression level of B lymphocyte-induced maturation protein-1 (Blimp1) gene (Prdm1). Further, downregulation of Blimp1 led to forced expression of anti-osteoclastogenic genes, including interferon regulatory factor-8 (Irf8) and B-cell lymphoma 6 (Bcl6) genes. Taken together, our data suggested that purpurogallin inhibits osteoclast differentiation via downregulation of c-Fos and NFATc1.
منابع مشابه
Fisetin Inhibits Osteoclast Differentiation via Downregulation of p38 and c-Fos-NFATc1 Signaling Pathways
The prevention or therapeutic treatment of loss of bone mass is an important means of improving the quality of life for patients with disorders related to osteoclast-mediated bone loss. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Continus coggygria), exhibits various biological activities, but its effect on osteoclast differentiation is unknown. In this study, fisetin dose-...
متن کاملParthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytot...
متن کاملAngelica sinensis extract inhibits RANKL-mediated osteoclastogenesis by down-regulated the expression of NFATc1 in mouse bone marrow cells
BACKGROUND Destructive erosion of bone or osteolysis is a major complication of inflammatory conditions such as rheumatoid arthritis (RA), periodontal disease, and periprosthetic osteolysis. Natural plant-derived products have received recent attention as potential therapeutic and preventative drugs in human disease. METHODS The effect of Angelica sinensis (AS) extract on RANKL-induced osteoc...
متن کاملPurslane suppresses osteoclast differentiation and bone resorbing activity via inhibition of Akt/GSK3β-c-Fos-NFATc1 signaling in vitro and prevents lipopolysaccharide-induced bone loss in vivo.
Purslane (Portulaca oleracea L.) is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region and is widely distributed around the globe. It has a wide range of pharmacological effects, such as antibacterial, anti-aging, anti-inflammatory, and anti-oxidative properties. Although the extract of purslane has numerous beneficial pharmacological effects, its effect on osteocl...
متن کاملPyrroloquinoline Quinine Inhibits RANKL-Mediated Expression of NFATc1 in Part via Suppression of c-Fos in Mouse Bone Marrow Cells and Inhibits Wear Particle-Induced Osteolysis in Mice
The effects of pyrroloquinoline quinine (PQQ) on RANKL-induced osteoclast differentiation and on wear particle-induced osteolysis were examined in this study. PQQ inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP in RANKL-treated BMMs was inhibited ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2018